md2_dgst.c 4.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171
  1. #include <stdio.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. //#include <openssl/md2.h>
  5. //#include <openssl/opensslv.h>
  6. //#include <openssl/crypto.h>
  7. #include "md2.h"
  8. //const char *MD2_version="MD2" OPENSSL_VERSION_PTEXT;
  9. /* Implemented from RFC1319 The MD2 Message-Digest Algorithm
  10. */
  11. #define UCHAR unsigned char
  12. static void md2_block(MD2_CTX *c, const unsigned char *d);
  13. /* The magic S table - I have converted it to hex since it is
  14. * basically just a random byte string. */
  15. static const MD2_INT S[256]={
  16. 0x29, 0x2E, 0x43, 0xC9, 0xA2, 0xD8, 0x7C, 0x01,
  17. 0x3D, 0x36, 0x54, 0xA1, 0xEC, 0xF0, 0x06, 0x13,
  18. 0x62, 0xA7, 0x05, 0xF3, 0xC0, 0xC7, 0x73, 0x8C,
  19. 0x98, 0x93, 0x2B, 0xD9, 0xBC, 0x4C, 0x82, 0xCA,
  20. 0x1E, 0x9B, 0x57, 0x3C, 0xFD, 0xD4, 0xE0, 0x16,
  21. 0x67, 0x42, 0x6F, 0x18, 0x8A, 0x17, 0xE5, 0x12,
  22. 0xBE, 0x4E, 0xC4, 0xD6, 0xDA, 0x9E, 0xDE, 0x49,
  23. 0xA0, 0xFB, 0xF5, 0x8E, 0xBB, 0x2F, 0xEE, 0x7A,
  24. 0xA9, 0x68, 0x79, 0x91, 0x15, 0xB2, 0x07, 0x3F,
  25. 0x94, 0xC2, 0x10, 0x89, 0x0B, 0x22, 0x5F, 0x21,
  26. 0x80, 0x7F, 0x5D, 0x9A, 0x5A, 0x90, 0x32, 0x27,
  27. 0x35, 0x3E, 0xCC, 0xE7, 0xBF, 0xF7, 0x97, 0x03,
  28. 0xFF, 0x19, 0x30, 0xB3, 0x48, 0xA5, 0xB5, 0xD1,
  29. 0xD7, 0x5E, 0x92, 0x2A, 0xAC, 0x56, 0xAA, 0xC6,
  30. 0x4F, 0xB8, 0x38, 0xD2, 0x96, 0xA4, 0x7D, 0xB6,
  31. 0x76, 0xFC, 0x6B, 0xE2, 0x9C, 0x74, 0x04, 0xF1,
  32. 0x45, 0x9D, 0x70, 0x59, 0x64, 0x71, 0x87, 0x20,
  33. 0x86, 0x5B, 0xCF, 0x65, 0xE6, 0x2D, 0xA8, 0x02,
  34. 0x1B, 0x60, 0x25, 0xAD, 0xAE, 0xB0, 0xB9, 0xF6,
  35. 0x1C, 0x46, 0x61, 0x69, 0x34, 0x40, 0x7E, 0x0F,
  36. 0x55, 0x47, 0xA3, 0x23, 0xDD, 0x51, 0xAF, 0x3A,
  37. 0xC3, 0x5C, 0xF9, 0xCE, 0xBA, 0xC5, 0xEA, 0x26,
  38. 0x2C, 0x53, 0x0D, 0x6E, 0x85, 0x28, 0x84, 0x09,
  39. 0xD3, 0xDF, 0xCD, 0xF4, 0x41, 0x81, 0x4D, 0x52,
  40. 0x6A, 0xDC, 0x37, 0xC8, 0x6C, 0xC1, 0xAB, 0xFA,
  41. 0x24, 0xE1, 0x7B, 0x08, 0x0C, 0xBD, 0xB1, 0x4A,
  42. 0x78, 0x88, 0x95, 0x8B, 0xE3, 0x63, 0xE8, 0x6D,
  43. 0xE9, 0xCB, 0xD5, 0xFE, 0x3B, 0x00, 0x1D, 0x39,
  44. 0xF2, 0xEF, 0xB7, 0x0E, 0x66, 0x58, 0xD0, 0xE4,
  45. 0xA6, 0x77, 0x72, 0xF8, 0xEB, 0x75, 0x4B, 0x0A,
  46. 0x31, 0x44, 0x50, 0xB4, 0x8F, 0xED, 0x1F, 0x1A,
  47. 0xDB, 0x99, 0x8D, 0x33, 0x9F, 0x11, 0x83, 0x14,
  48. };
  49. const char *MD2_options(void)
  50. {
  51. if (sizeof(MD2_INT) == 1)
  52. return("md2(char)");
  53. else
  54. return("md2(int)");
  55. }
  56. int MD2_Init(MD2_CTX *c)
  57. {
  58. c->num=0;
  59. memset(c->state,0,sizeof c->state);
  60. memset(c->cksm,0,sizeof c->cksm);
  61. memset(c->data,0,sizeof c->data);
  62. return 1;
  63. }
  64. int MD2_Update(MD2_CTX *c, const unsigned char *data, size_t len)
  65. {
  66. register UCHAR *p;
  67. if (len == 0) return 1;
  68. p=c->data;
  69. if (c->num != 0)
  70. {
  71. if ((c->num+len) >= MD2_BLOCK)
  72. {
  73. memcpy(&(p[c->num]),data,MD2_BLOCK-c->num);
  74. md2_block(c,c->data);
  75. data+=(MD2_BLOCK - c->num);
  76. len-=(MD2_BLOCK - c->num);
  77. c->num=0;
  78. /* drop through and do the rest */
  79. }
  80. else
  81. {
  82. memcpy(&(p[c->num]),data,len);
  83. /* data+=len; */
  84. c->num+=(int)len;
  85. return 1;
  86. }
  87. }
  88. /* we now can process the input data in blocks of MD2_BLOCK
  89. * chars and save the leftovers to c->data. */
  90. while (len >= MD2_BLOCK)
  91. {
  92. md2_block(c,data);
  93. data+=MD2_BLOCK;
  94. len-=MD2_BLOCK;
  95. }
  96. memcpy(p,data,len);
  97. c->num=(int)len;
  98. return 1;
  99. }
  100. static void md2_block(MD2_CTX *c, const unsigned char *d)
  101. {
  102. register MD2_INT t,*sp1,*sp2;
  103. register int i,j;
  104. MD2_INT state[48];
  105. sp1=c->state;
  106. sp2=c->cksm;
  107. j=sp2[MD2_BLOCK-1];
  108. for (i=0; i<16; i++)
  109. {
  110. state[i]=sp1[i];
  111. state[i+16]=t=d[i];
  112. state[i+32]=(t^sp1[i]);
  113. j=sp2[i]^=S[t^j];
  114. }
  115. t=0;
  116. for (i=0; i<18; i++)
  117. {
  118. for (j=0; j<48; j+=8)
  119. {
  120. t= state[j+ 0]^=S[t];
  121. t= state[j+ 1]^=S[t];
  122. t= state[j+ 2]^=S[t];
  123. t= state[j+ 3]^=S[t];
  124. t= state[j+ 4]^=S[t];
  125. t= state[j+ 5]^=S[t];
  126. t= state[j+ 6]^=S[t];
  127. t= state[j+ 7]^=S[t];
  128. }
  129. t=(t+i)&0xff;
  130. }
  131. memcpy(sp1,state,16*sizeof(MD2_INT));
  132. //OPENSSL_cleanse(state,48*sizeof(MD2_INT));
  133. }
  134. int MD2_Final(unsigned char *md, MD2_CTX *c)
  135. {
  136. int i,v;
  137. register UCHAR *cp;
  138. register MD2_INT *p1,*p2;
  139. cp=c->data;
  140. p1=c->state;
  141. p2=c->cksm;
  142. v=MD2_BLOCK-c->num;
  143. for (i=c->num; i<MD2_BLOCK; i++)
  144. cp[i]=(UCHAR)v;
  145. md2_block(c,cp);
  146. for (i=0; i<MD2_BLOCK; i++)
  147. cp[i]=(UCHAR)p2[i];
  148. md2_block(c,cp);
  149. for (i=0; i<16; i++)
  150. md[i]=(UCHAR)(p1[i]&0xff);
  151. memset((char *)&c,0,sizeof(c));
  152. return 1;
  153. }